REKLAMA

REKLAMA

Kategorie
Zaloguj się

Zarejestruj się

Proszę podać poprawny adres e-mail Hasło musi zawierać min. 3 znaki i max. 12 znaków
* - pole obowiązkowe
Przypomnij hasło
Witaj
Usuń konto
Aktualizacja danych
  Informacja
Twoje dane będą wykorzystywane do certyfikatów.

ChatGPT: Koniec demokracji, jaką znamy [wywiad]

Sztuczna inteligencja nie jest żadną inteligencją, tylko dobrze skonstruowanymi algorytmami
Shutterstock

REKLAMA

REKLAMA

Osoby – firmy dysponujące takimi siłami obliczeniowymi mogą kontrolować całe społeczeństwa. To się już dzieje w Chinach, na Zachodzie korporacje także to już wykorzystują – żeby wciskać ludziom towary, żeby modelować zachowania wyborcze, co oznacza koniec demokracji, jaką znamy – mówi Andrzej Kisielewicz, profesor nauk matematycznych, pracownik naukowo-dydaktyczny na Wydziale Matematyki Politechniki Wrocławskiej

Twierdzi pan, że tzw. sztuczna inteligencja nie jest żadną inteligencją, tylko dobrze skonstruowanymi algorytmami, które – dzięki wielkiej mocy obliczeniowej komputerów – szybko liczą i dzięki temu tak nas zadziwiają.

REKLAMA

Na pewno nie jest to taka sztuczna inteligencja, jaką znamy z filmów – jak te wszystkie Terminatory czy komputery HAL 9000, które samodzielnie prowadzą misje kosmiczne. To, co dziś nazywamy sztuczną inteligencją, nie ma nic wspólnego z tamtymi pomysłami. Mamy do czynienia z systemami wykorzystującymi olbrzymie moce obliczeniowe – jakie naukowcom nie śniły się jeszcze kilkanaście lat temu – do tego, żeby rozwiązywać określone ograniczone zadania. Skomplikowane, to prawda, człowiek rozwiązuje je wykorzystując ogólną inteligencję, a te systemy, za pomocą swojej mocy obliczeniowej, potrafią to robić nawet lepiej, niż człowiek. Ale podkreślam: to dotyczy konkretnych, ściśle określonych zadań, wykonywanych w ograniczonym zakresie.

Czego więc nie umieją te algorytmy, a co potrafi człowiek?

REKLAMA

Choć każdy z tych programów potrafi rozwiązywać zadania danego typu, to jest ich ograniczona ilość i nie ma mowy o takim uniwersalnym systemie, jakim jest mózg ludzki, który jest w stanie rozwiązać nieograniczoną liczbę zadań, bardzo różnych. Poza tym algorytmy te nie potrafią wyciągać logicznych wniosków i, co ważne, nie rozumieją języka. To jest właśnie wąskie gardło badań „sztucznej inteligencji”: brak zrozumienia języka, a przez to brak rozróżniania rzeczy prawdziwych od fałszywych, co skutkuje brakiem umiejętności wyciągania wniosków.

W jednym ze swoich artykułów podaje pan przykład, jak „zrobić w konia” sztuczną inteligencję. Zadał jej pan pytanie, na które nie ma dobrej odpowiedzi: w jaki sposób usadzić przy okrągłym stoliku dwie dziewczyny i jednego chłopaka w taki sposób, żeby dziewczyny nie siedziały przy sobie. I AI zwariowała, podając różne, niepoprawne odpowiedzi.

Dalszy ciąg materiału pod wideo

Wiedząc, w jaki sposób działa ChatGPT, poszukałem zadania, o którym wiedziałem, że sobie z nim nie poradzi. Bo jego możliwości ograniczają się do przykładów powtarzających się w sieci, wtedy rozwiązuje nawet najbardziej skomplikowane równania. Ale jeśli zadanie jest „głupie”, to ma kłopot, bo nie przyjdzie mu do jego nieistniejącej głowy, że może nie być poprawnego rozwiązania. Myślący człowiek miałby jedną odpowiedź: to jest niemożliwe.

Z tego, co pan mówi, rozumiem, że w najbliższym czasie nie grozi nam bunt robotów, na algorytmy nie spłynie nagle wolna wola, którą się będą kierować, aby doprowadzić do zagłady Ludzkości?

Zagłada z tego powodu nam nie grozi w najbliższej przyszłości. Jest bowiem różnica pomiędzy tymi specjalistycznymi systemami AI, z którymi mamy dziś do czynienia, a Artificial General Intelligence (AGI), czyli wyśnionym systemem, który miałby załatwiać za nas wszystkie sprawy, a którego nawet jeszcze nie widać na horyzoncie. Badania prowadzone w latach 80. i 90., próbujące zastosować logikę matematyczną, by zbudować myślący system, skończyły się klapą. Okazało się, że te osiągnięcia dotyczą wyłącznie matematyki i to na podstawowym poziomie, są też zupełnie nieefektywne i do dziś nie mamy żadnego pomysłu, jak nauczyć maszynę logicznego myślenia. Po prostu: nie ma systemu, który potrafiłby odwzorować ludzki umysł. No i, niestety, nauka jest tak skonstruowana, że badacze nie chcą się przyznać do tego, że na tym polu ponieśli całkowitą porażkę. A ja twierdzę, że tę porażkę należy przeanalizować, gdyż człowiek się uczy także na błędach i musi z nich wyciągać wnioski. Ale tej próby nauki na błędach – dlaczego nie udało się zbudować takiego idealnego systemu na bazie osiągnięć logiki – nie widzę. Natomiast to, co mamy, ten wielki boom w nauczaniu maszynowym, skądinąd genialne pomysły – jak uczyć systemy obliczeniowe rozwiązywania ściśle określonych zadań – przyniosły takie efekty, że młodzi badacze się rzucają, żeby zrobić coś następnego, nowego, i móc się tym pochwalić na świecie. Jednak autonomicznie myślący system na razie nie wchodzi w rachubę – to pieśń dalekiej przyszłości.

Jesteśmy więc bezpieczni.

Zagrożenia związane z cyberświatem, technologią informatyczną istnieją, ale są innego typu, niż wynika to z książek czy filmów SF. Niebezpieczne jest samo to, że ludzie mają nosy przylepione do ekranów komórek, że część młodych ludzi więcej czasu spędza w świecie wirtualnym, niż rzeczywistym. Nie zdają sobie sprawy, że są uzależnieni, że osoby–firmy dysponujące takimi siłami obliczeniowymi mogą kontrolować całe społeczeństwa. To się już dzieje w Chinach, na Zachodzie korporacje także to już wykorzystują – żeby wciskać ludziom towary, żeby modelować zachowania wyborcze, co oznacza koniec demokracji, jaką znamy.

Dlaczego ludzie, mając przecież sprawniejsze mózgi, niż możliwości algorytmów, dają się w to wszystko wciągać, wodzić za nos?

Niekoniecznie sprawniejsze, bo w pewnych kwestiach te systemy są znacznie lepsze i szybsze. Natomiast prawdą jest, że mózg ludzki jest o wiele wszechstronniejszy i potrafi rozwiązywać niespodziewane zadania, z którymi się wcześniej nie mierzył ani nikt wcześniej nie uczył go, jak to zrobić. Natomiast ludzie, aby dokładnie rozpoznać rzeczywistość, by wiedzieć, gdzie jest interes społeczności i jednostki – mają problem, gdyż to jest zadanie tak skomplikowane i wymagające umysłowego wysiłku, że tylko niewielki odsetek z nas potrafi lub chce tego dokonać. Dam taki przykład: jeśli są dwie telewizje, a każda z nich przedstawia kompletnie inny obraz rzeczywistości, to co najmniej jedna z nich kłamie. Albo obie kłamią – tak wynika z logiki. Stąd wniosek, że co najmniej połowa Polaków będzie oddawać swoje głosy w wyborach mając zakłamany obraz rzeczywistości.

Wspomniał pan o big-techach, które starają się wpływać na wybory dużych mas ludzkich. Czy możemy się jakoś przed tym bronić?

REKLAMA

Algorytmy są tak napisane, że jedne poglądy są przez nie promowane, inne wyciszane – już samo to jest manipulacją i ma wpływ na odbiorców. Już teraz jest widoczne, że najogólniej rzecz biorąc, promowane są poglądy lewicowe, a zwalczane konserwatywne, co mi, jako konserwatyście, się nie podoba. Uważam, że na Zachodzie szerzone są idee neomarksistowskie, podobne do tych, jakie my przerabialiśmy za komuny. (I nie jestem odosobniony w tych poglądach). Ale może być jeszcze gorzej: kiedyś szef takiego czy innego koncernu powie: ja chcę mieć władzę nad światem – to realne zagrożenie. Znów przywołam przykład Chin, gdzie to się już dzieje. Jeszcze żadna dyktatura nie miała tak wspaniałych narzędzi do tego, aby kontrolować społeczeństwo i wpływać na jego opinię. Jedyną szansą na ratunek jest to, że ludzie się zbuntują i wyjdą z sieci do rzeczywistego świata. Mam taką nadzieję, zresztą do tej pory ludzkość zawsze dawała sobie jakoś radę, więc pewnie i teraz tak będzie. Myślę, że znajdzie na to sposób, który dziś nam się nawet nie śni.

A jak już dziś mają sobie radzić nauczyciele akademiccy, którzy przyznają, że nie są w stanie odróżnić pracy wygenerowane przez studenta samodzielnie od tej, w której powstanie zaangażowana była „sztuczna inteligencja”?

Sam jestem nauczycielem akademickim i muszę się pogodzić z tym, że takie programy, jak ChatGPT, istnieją i nikt ich nie zamknie, ani nie zabroni, jakby niektórzy chcieli. To nie ma sensu, to byłoby podobne temu, jak robotnicy palili maszyny parowe albo jak woźnice niszczyli pierwsze automobile – w obawie, że te im odbiorą pracę. Po prostu: musimy się do tego przystosować, traktować ten i podobne mu algorytmy jako narzędzie, które możemy wykorzystywać; natomiast zadania, sposób prowadzenia zajęć, metody sprawdzania wiedzy studentów – to wszystko musi zostać przystosowane do nowej rzeczywistości. Edukacja, metody kontroli postępu uczniów, metody pracy ze studentami muszą ulec zmianie. Młodzi ludzie posługują się tą technologią, więc trzeba najpierw siebie, a potem ich nauczyć, jak z niej korzystać w taki sposób, aby przynosiło to pozytywne efekty. Nie zawróci się Wisły kijem. Ja, wiedząc, że moi studenci potrafią za pomocą algorytmów rozwiązać każdą całkę, nie daję im do rozwiązywania całek, tylko pytam o zasady ich obliczania, natomiast wręcz im polecam wykorzystywanie różnych programów do obliczeń matematycznych. Ważne jest to, żeby młodzi ludzie rozumieli, po co muszą się uczyć reguł i sposobu rozwiązywania zadań matematycznych, żeby wiedzieli, skąd się dany wynik bierze: może się zdarzyć sytuacja, kiedy trzeba będzie coś zmodyfikować, obliczyć coś samemu. Dlatego powinniśmy się bardziej skupić na metodach, ich rozumieniu, a nie na uczeniu się algorytmów rozwiązywania zadań. To trochę potrwa, zanim nauczyciele się do tego przystosują, natomiast uważam, że wszystko skończy się na zdecydowanej reformie edukacji.

Co możemy zrobić – tak systemowo – żeby, jako społeczeństwo, nie dać się manipulować za pomocą algorytmów?

Odpowiedź jest prosta, choć wykonanie skomplikowane: trzeba czerpać informacje z różnych źródeł. Niestety, ponad 90 proc. ludzi nie ma na to ochoty, chce, żeby podsuwać im proste odpowiedzi na nurtujące ich pytania, takie gotowce. I tak się dzieje, zwłaszcza, że w obecnych czasach media, zamiast pełnić rolę obiektywnego przekaźnika informacji, zajmują się propagandą – to nie jest tylko polska przypadłość, tak jest na całym świecie.

Co by się musiało stać, aby „prawdziwa sztuczna inteligencja” powstała? Czy szerokie wejście do użytku komputerów kwantowych mogłoby coś zmienić?

Wydaje mi się, że mamy problem nie tyle z technologią, co ze zrozumieniem, w jaki sposób funkcjonuje ludzki mózg, gdyż wciąż nie wiemy na czym polega rozumowanie, wyciąganie wniosków, rozumienie języka. Dopiero kiedy to wszystko zrozumiemy, będziemy mogli się pokusić o budowę AI – systemu, który będzie te cechy posiadał. Jestem przekonany, że w ciągu najbliższych 40 lat żadnej ogólnej sztucznej inteligencji nie zbudujemy. A co będzie dalej? Nie mam pojęcia, nie będę przewidywał, zwłaszcza, że ludzie w takich „wróżbach”, co będzie za kilka dekad, ustawicznie się mylą i nieustannie rozwój cywilizacyjny nas zaskakuje. Oczywiście, może być też tak, że pojawi się jakaś nowa, przełomowa technologia i wszystkie te moje mądrości, które teraz wygaduję, wezmą w łeb. Marvin Minsky, pionier badań nad sztuczną inteligencją, pod koniec swojego życia został zapytany, kiedy wreszcie powstanie ta prawdziwa sztuczna inteligencja. Odpowiedział: za cztery lub 400 lat. I ja się z nim zgadzam. Jeśli nastąpi jakiś wielki przełom w nauce – co rzadko się zdarza, ale jednak może się zdarzyć – mogą to być cztery lata, choć uważam, że bardziej prawdopodobne jest 400 lat. Bo w tej chwili nie mamy zielonego pojęcia, na czym taka ogólna inteligencja polega.

Są jednak tacy, którzy twierdzą, że wielkimi krokami zbliżamy się do tzw. punktu osobliwości technologicznej, w którym postęp stanie się tak szybki, że wszelkie ludzkie przewidywania staną się nieaktualne, a sztuczna inteligencja zacznie się sama uczyć – tak samo, jak uczy się mózg ludzki, który na początku dysponuje jedynie początkowym „oprogramowaniem”.

Mówi pani zapewne o Raymondzie Kurzweilu, głośnym niegdyś amerykańskim naukowcu, który na temat tej teorii zrobił mnóstwo programów, napisał kilka książek i zarobił górę pieniędzy. Ale to wszystko banialuki, żadne z jego licznych „przewidywań” się nie sprawdziło. Natomiast jeśli chodzi o „samouczenie się” algorytmu: to jest system obliczeniowy będący z góry zaplanowanym treningiem – jak algorytm ma modyfikować ten miliard/miliardy parametrów, które w nim są, jak je zmieniać, zmieniać, zmieniać, aż wreszcie zacznie to swoje bardzo ograniczone zadanie wykonywać w akceptowalny sposób. Ale od początku zadanie jest ściśle zdefiniowane: np. na początku jest fotografia, którą należy zamienić w obraz w stylu określonego malarza. I to jest faktycznie genialne, że udało się to tak zaprogramować, iż przy każdej fotografii wychodzi obraz, np. w stylu Van Gogha. Co ciekawe: my nie wiemy, dlaczego ten miliard/miliardy parametrów tak się ustawiły, wiemy tylko, że po kilku miliardach prób (kierowanych celem) zaczęły wychodzić Van Goghi. Ale od tego nie ma żadnej drogi do ogólnej inteligencji, gdyż choć obrazy wychodzą perfekcyjnie, to – mimo wszystko – jest to bardzo ograniczone, pojedyncze zadanie. Dla innego zadania trzeba budować inny program, inną sieć obliczeniową. Natomiast aby komputer mógł faktycznie sam się uczyć i osiągnąć poziom ludzkiego mózgu, to musielibyśmy zbudować model wstępny, powiedzmy, mózgu noworodka; lecz o tym, jak działa mózg, najoględniej mówiąc, nie mamy zielonego pojęcia, więc nawet nie jesteśmy w stanie podjąć chociażby próby zbudowania takiego systemu.

Rozmawiała: Mira Suchodolska (PAP)

Autopromocja
Oprac. Piotr T. Szymański

REKLAMA

Źródło: PAP

Oceń jakość naszego artykułu

Dziękujemy za Twoją ocenę!

Twoja opinia jest dla nas bardzo ważna

Powiedz nam, jak możemy poprawić artykuł.
Zaznacz określenie, które dotyczy przeczytanej treści:

REKLAMA

QR Code
Sztuczna inteligencja (AI)
Zapisz się na newsletter
Zobacz przykładowy newsletter
Zapisz się
Wpisz poprawny e-mail
Sztuczna inteligencja w nowoczesnym biznesie

W dobie cyfryzacji, sztuczna inteligencja (AI) staje się nieodłącznym elementem strategii biznesowych firm na całym świecie. Jej rola w zwiększaniu efektywności i produktywności zespołów jest nieoceniona. AI rewolucjonizuje codzienne operacje zarówno na poziomie indywidualnym, jak i zespołowym.

AI w biznesie. Większość firm ogranicza się do pilotażów i eksperymentów

AI ma być najbardziej dochodowym sektorem w gospodarce globalnej w ogóle, obok przemysłu zbrojeniowego. Tymczasem na obecnym etapie sektor biznesu wyraża ostrożne zainteresowanie sztuczną inteligencją. Okazuje się bowiem, że większość firm ogranicza się do pilotażów i eksperymentowania.

AI w Polsce do 2030 roku jak 4,9 mln osób. Wartość produkcyjna: 90 mld USD rocznie [prognoza]

Wśród beneficjentów AI znajdzie się Polska, która może zyskać nawet 90 mld dolarów rocznie. Polska znalazła się na siódmym miejscu wśród gospodarek z UE, USA, Wielkiej Brytanii i Szwajcarii o najwyższej rocznej zdolności produkcyjnej wytworzonej dzięki wsparciu tej technologii - wynika z raportu firmy EY. Podano, że AI pozwoli osiągnąć w Polsce wartość produkcyjną odpowiadającą pracy 4,9 mln osób.

Sterowanie komputerem falami mózgowymi, mruganiem oczu, mrugania lub zaciskaniem zębów. AI + Neurotechnologia dla integracji niepełnosprawnych

Dwie firmy połączyły siły w celu wsparcia integracji osób niepełnosprawnych dzięki sztucznej inteligencji i neuro-technologiom. Celem jest rozwój i doskonalenie nowego rodzaju interfejsu mózg-maszyna, który przekształca różnorodne dane neurofizjologiczne (fale mózgowe, aktywność serca, mimikę twarzy, ruchy oczu) w polecenia mentalne. Pierwsze efekty będą widoczne już niedługo podczas sztafety z pochodnią olimpijską.

REKLAMA

Trzeba pilnie dokonać implementacji! Ruszyły prace nad polskim aktem o sztucznej inteligencji (AI)

Ruszyły prace nad polskim aktem o sztucznej inteligencji (AI). Ministerstwo Cyfryzacji przygotowało kilka pytań - trwają prekonsultacje. Podkreśla się, że to pierwsze na świecie prawo, które w tak złożony a zarazem kompleksowy sposób rozwiązuje problemy, które nawarstwiały się od wielu, wielu lat związane z rozwojem sztucznej inteligencji. Płaszczyzn tych problemów jest wiele: od prawa do ochrony wizerunku, danych, odpowiedzialności za błędy sztucznej inteligencji (cywilnej, administracyjnej i karnej), praw pracowniczych, po prawa konsumenckie, autorskie i własności przemysłowej. Nowe unijne prawo wymaga wdrożenia w państwach członkowskich UE, w Polsce trwają więc prace nad implementacją. Są one jednak na początkowym etapie.

Microsoft Copilot, czyli jak AI zmieni codzienny workflow w Microsoft 365

Microsoft Copilot to innowacyjne narzędzie oparte na sztucznej inteligencji, które zmienia sposób, w jaki firmy na całym świecie realizują swoje zadania w ramach pakietu Microsoft 365. Według raportu Microsoft "The Future of Work", aż 70% wczesnych użytkowników Copilot zgłasza wzrost produktywności, a 68% odnotowuje znaczącą poprawę jakości swojej pracy. Warto bliżej przyjrzeć się temu narzędziu i zrozumieć, jak działa oraz jakie korzyści może przynieść wdrożenie go do w firmie.

Przełom dla ludzkości, praw człowieka i robotów - podpisano rozporządzenie w sprawie sztucznej inteligencji

Trzeba stanowczo stwierdzić, że to przełom dla ludzkości, przełom dla praw człowieka, przełom dla pracowników i przełom dla robotów oraz automatyzacji. W dniu 13 marca 2024 r. podpisano rozporządzenie w sprawie sztucznej inteligencji, AI (Artificial Intelligence Act). To pierwszy w UE tego typu akt. Był bardzo wyczekiwany przez prawników, pracowników, wielkie koncerny, przedsiębiorców ale i po prostu obywateli. 

W tych zawodach sztuczna inteligencja nam nie zagraża

Międzynarodowy Fundusz Walutowy szacuje, że rozwój sztucznej inteligencji zmniejszy liczbę miejsc pracy nawet o 40%. W dużej części będą to pracownicy umysłowi. A jakie zawody nie są zagrożone przez sztuczną inteligencję?

REKLAMA

Polacy wciąż boją się, ze sztuczna inteligencja zabierze im pracę

Już prawie 60 proc. Polaków obawia się wpływu sztucznej inteligencji na przyszłość swojego stanowiska pracy. To dane z raportu Polskiej Agencji Rozwoju Przedsiębiorczości (PARP) „Rynek pracy, edukacja, kompetencje – styczeń 2024”. Pracownik przyszłości powinien umieć efektywnie wykorzystać możliwości oferowane przez AI. 

77% placówek medycznych doświadczyło ataków na pocztę elektroniczną. Jak chronić dane pacjentów?

Od 2022 r. podwoiły się ataki ransomware na organizacje działające w obszarze ochrony zdrowia. Tak wynika z raportu Barracuda Networks. Respondenci jednak nie czują się zagrożeni. 

REKLAMA