REKLAMA

REKLAMA

Kategorie
Zaloguj się

Zarejestruj się

Proszę podać poprawny adres e-mail Hasło musi zawierać min. 3 znaki i max. 12 znaków
* - pole obowiązkowe
Przypomnij hasło
Witaj
Usuń konto
Aktualizacja danych
  Informacja
Twoje dane będą wykorzystywane do certyfikatów.

7 wyzwań biznesowych, które może rozwiązać AI (z niewielkim wsparciem ludzi)

Hans Roth
SVP & General Manager w firmie Red Hat, EMEA
Sama sztuczna inteligencja nie jest wystarczająca, to ludzie są „tajną bronią”
ShutterStock

REKLAMA

REKLAMA

Początki sztucznej inteligencji (AI) sięgają lat 50. XX wieku. W porównaniu do technologii takich jak telefon, komputery czy Internet, ewolucja AI przebiegała dotąd stosunkowo wolno. Wydaje się jednak, że nadszedł moment, w którym AI jest dostępna dla prawie każdego, a branża technologiczna wkracza w nowy rozdział. Wszyscy musimy zastanowić się nad tym, jak sztuczna inteligencja może pomóc nam robić więcej za mniej. Zastosowanie AI w pisaniu, tworzeniu obrazów czy produkcji muzyki to przełomowy moment w budowaniu świadomości społecznej związanej z możliwościami tej technologii.
rozwiń >

AI to „tylko” narzędzie

Podczas rozmów z firmami zachęcam je do wyjścia poza szum informacyjny wokół AI i nietraktowania tej technologii jedynie jako kolejnej nowinki. Mam tu na myśli spojrzenie na sztuczną inteligencję jako na narzędzie do rozwiązywania problemów oraz szukania i wykorzystywania szans. Chmura obliczeniowa odpowiedziała na wyzwanie związane ze skalowalnością biznesu, blockchain’em i centralizacją, a oprogramowanie do zarządzania reklamami w sieci zapewniło bardziej efektywne wydawanie budżetów marketingowych. Podobnie jak te rozwiązania, AI powinna być oceniana na podstawie wyników, które pomaga osiągnąć.

REKLAMA

Jakie są wyzwania i szanse związane z wykorzystywaniem AI? W Red Hat rozmawiamy o niej w siedmiu kluczowych aspektach biznesowych:

1. Wydajność vs. innowacyjność

W pogoni za efektywnością operacyjną przedsiębiorstwa często zmuszane są do osiągania lepszych wyników przy mniejszych nakładach. Maksymalizacja efektów przy ograniczonej liczbie pracowników oznacza konieczność lepszego wykorzystywania istniejących w firmie umiejętności poprzez wypełnianie luk w wiedzy, rozwijanie nowych umiejętności i tworzenie warunków do rozwoju innowacji.

2. Zarządzanie złożonością

Ciągłe rozwijanie oprogramowania tworzy nieograniczony potencjał, ale może powodować złożone problemy. Każdy nowy system i jego integracja wiąże się z ryzykiem, np. zagrożeniami związanymi z bezpieczeństwem, zakłóceniami w dostawach i odbiorze usług lub gwałtownym wzrostem popytu. Popularność hybrydowych chmur obliczeniowych może stanowić dodatkowe obciążenie. Systemy monitorowania zdarzeń oferują pewien poziom kontroli, jednak zespoły IT mogą szybko zostać przeciążone przez dużą ilość danych tworzonych przez rosnący ekosystem chmurowy.

3. Umożliwienie automatyzacji

W odniesieniu do dwóch powyższych aspektów, kluczowa stała się automatyzacja. Pozwala ona odciążyć pracowników od mozolnych zadań, robiąc w zamian przestrzeń na te bardziej wartościowe. Automatyzacja rodzi jednak pytania o to, co powinno zostać zautomatyzowane, za pomocą jakich narzędzi i skąd można mieć pewność, że zadziała tak jak powinna?

Dalszy ciąg materiału pod wideo

4. Skalowanie zgodnie z zapotrzebowaniem

Praca z ograniczonymi zasobami to tylko jeden z elementów wyzwań stojących przed zespołami IT. Muszą one jednocześnie skalować swoje operacje, aby sprostać rosnącemu zapotrzebowaniu na aplikacje i usługi. Nadążanie za popytem zarówno na DevOps, jak i w pełni rozwinięte środowiska produkcyjne nie polega jedynie na udostępnianiu systemów, ale również na zarządzaniu udostępnianymi rozwiązaniami.

5. Połączenie na brzegu sieci

Wkroczenie w przetwarzanie brzegowe z pewnością utrudnia życie. Centra danych nie są już jedynymi ośrodkami przetwarzania zasobów. Brzeg to nie tylko inne „miejsce” wykonywania obliczeń, ale również zupełnie odmienne podejście do pracy z danymi. U podstaw pojawia się dylemat: jak zastosować standardy przetwarzania, dostępności oraz bezpieczeństwa do infrastruktury brzegowej.

6. Równoważenie innowacji i bezpieczeństwa

Nieograniczona innowacyjność zagraża bezpieczeństwu, jednak z drugiej strony nadgorliwość w zakresie ochrony może stłumić kreatywność. Przedsiębiorstwa muszą zająć stanowisko w tej kwestii i stale dostosowywać do niego swoje działania oraz kulturę organizacyjną. Włączenie funkcji i protokołów zabezpieczeń w oprogramowanie pozwala zmienić postrzeganie bezpieczeństwa i innowacji jako kompromisu. Są to funkcje, które mogą wzajemnie się uzupełniać. 

7. Planowanie zrównoważonego rozwoju

Rządy, udziałowcy, klienci i pracownicy jak nigdy wcześniej wymagają od firm spełniania obowiązków w zakresie zrównoważonego rozwoju. Dla zespołów IT może to oznaczać sprzeczne komunikaty: z jednej strony wymagające od nich robienia więcej, a z drugiej oszczędzania energii. W tym przypadku kluczowe jest umożliwienie śledzenia i raportowania informacji dotyczących zrównoważonego rozwoju oraz dostosowywania modeli pracy tak, aby wspierały to podejście.

Sama sztuczna inteligencja nie jest wystarczająca, to ludzie są „tajną bronią”

Sztuczna inteligencja jest wszechstronnym narzędziem, które może pomóc firmom sprostać powyższym wyzwaniom. Jednak tym, co naprawdę łączy wszystkie siedem aspektów, jest nie tylko możliwość wykorzystania w nich AI. Sama sztuczna inteligencja nie jest wystarczająca. W każdym z wymienionych wyzwań to ludzie są prawdziwą tajną bronią. Bez osób, które identyfikują i ustalają priorytety, opracowują nowe rozwiązania oraz oceniają problemy i wprowadzają poprawki, sztuczna inteligencja w najlepszym przypadku nie będzie miała żadnego wpływu na procesy w firmie – a w najgorszym spowoduje negatywne i daleko idące konsekwencje.

Kluczowa jest jakość danych wprowadzanych do AI

REKLAMA

Wprowadzanie AI będzie tak dobre, jak trafne są dane, na których jest szkolona – to kluczowa kwestia, którą poruszam podczas rozmów z przedsiębiorcami. To nie ilość danych powinna stanowić kryterium oceny algorytmów, ale to czy dane szkoleniowe są odpowiednie dla firmy.

W Red Hat nazywamy to podejście „sztuczną inteligencją specyficzną dla domeny”. Jest ono przełomowym momentem w rozwoju AI. Gdy bazująca na sztucznej inteligencji aplikacja jest szkolona na prywatnych, ukierunkowanych danych oraz jest dostosowywana do standardów i praktyk w konkretnej firmie lub branży, ma większą zdolność do dostarczania naprawdę unikalnych i zróżnicowanych usług.

Przewaga otwartego oprogramowania

REKLAMA

Open source jest zdecydowanie najlepszą opcją do tworzenia rozwiązań SI specyficznych dla danej domeny. Każde takie oprogramowanie korzysta ze współpracy i wymiany pomysłów wielu utalentowanych osób. Prawie każde biznesowe narzędzie AI, które znam jest technologią open source – i mam tu również na myśli ChatGPT! To, co moim zdaniem dezorientuje i niepokoi liderów biznesu, to niezrozumienie pojęcia „open source”. Jest to baza kodowa oprogramowania (w tym przypadku aplikacji AI ), która – jak sama nazwa wskazuje – jest otwarta i dostępna do przeglądania oraz udostępniania. Dane, na których takie oprogramowanie jest szkolone i które generuje, są tak prywatne, jak tylko tego chcemy.

Ostatecznie prawdziwa moc sztucznej inteligencji nie leży w samych algorytmach, ale w synergii ludzkich spostrzeżeń, współpracy, trafności danych oraz przetwarzania komputerowego. Dyrektorzy przedsiębiorstw, którzy zrozumieją tę prawidłowość, już wkrótce staną się liderami innowacji.

Hans Roth, SVP & General Manager w firmie Red Hat, EMEA

Autopromocja

REKLAMA

Źródło: Źródło zewnętrzne

Oceń jakość naszego artykułu

Dziękujemy za Twoją ocenę!

Twoja opinia jest dla nas bardzo ważna

Powiedz nam, jak możemy poprawić artykuł.
Zaznacz określenie, które dotyczy przeczytanej treści:

REKLAMA

QR Code
Sztuczna inteligencja (AI)
Zapisz się na newsletter
Zobacz przykładowy newsletter
Zapisz się
Wpisz poprawny e-mail
AI w biznesie. Większość firm ogranicza się do pilotażów i eksperymentów

AI ma być najbardziej dochodowym sektorem w gospodarce globalnej w ogóle, obok przemysłu zbrojeniowego. Tymczasem na obecnym etapie sektor biznesu wyraża ostrożne zainteresowanie sztuczną inteligencją. Okazuje się bowiem, że większość firm ogranicza się do pilotażów i eksperymentowania.

AI w Polsce do 2030 roku jak 4,9 mln osób. Wartość produkcyjna: 90 mld USD rocznie [prognoza]

Wśród beneficjentów AI znajdzie się Polska, która może zyskać nawet 90 mld dolarów rocznie. Polska znalazła się na siódmym miejscu wśród gospodarek z UE, USA, Wielkiej Brytanii i Szwajcarii o najwyższej rocznej zdolności produkcyjnej wytworzonej dzięki wsparciu tej technologii - wynika z raportu firmy EY. Podano, że AI pozwoli osiągnąć w Polsce wartość produkcyjną odpowiadającą pracy 4,9 mln osób.

Sterowanie komputerem falami mózgowymi, mruganiem oczu, mrugania lub zaciskaniem zębów. AI + Neurotechnologia dla integracji niepełnosprawnych

Dwie firmy połączyły siły w celu wsparcia integracji osób niepełnosprawnych dzięki sztucznej inteligencji i neuro-technologiom. Celem jest rozwój i doskonalenie nowego rodzaju interfejsu mózg-maszyna, który przekształca różnorodne dane neurofizjologiczne (fale mózgowe, aktywność serca, mimikę twarzy, ruchy oczu) w polecenia mentalne. Pierwsze efekty będą widoczne już niedługo podczas sztafety z pochodnią olimpijską.

Trzeba pilnie dokonać implementacji! Ruszyły prace nad polskim aktem o sztucznej inteligencji (AI)

Ruszyły prace nad polskim aktem o sztucznej inteligencji (AI). Ministerstwo Cyfryzacji przygotowało kilka pytań - trwają prekonsultacje. Podkreśla się, że to pierwsze na świecie prawo, które w tak złożony a zarazem kompleksowy sposób rozwiązuje problemy, które nawarstwiały się od wielu, wielu lat związane z rozwojem sztucznej inteligencji. Płaszczyzn tych problemów jest wiele: od prawa do ochrony wizerunku, danych, odpowiedzialności za błędy sztucznej inteligencji (cywilnej, administracyjnej i karnej), praw pracowniczych, po prawa konsumenckie, autorskie i własności przemysłowej. Nowe unijne prawo wymaga wdrożenia w państwach członkowskich UE, w Polsce trwają więc prace nad implementacją. Są one jednak na początkowym etapie.

REKLAMA

Microsoft Copilot, czyli jak AI zmieni codzienny workflow w Microsoft 365

Microsoft Copilot to innowacyjne narzędzie oparte na sztucznej inteligencji, które zmienia sposób, w jaki firmy na całym świecie realizują swoje zadania w ramach pakietu Microsoft 365. Według raportu Microsoft "The Future of Work", aż 70% wczesnych użytkowników Copilot zgłasza wzrost produktywności, a 68% odnotowuje znaczącą poprawę jakości swojej pracy. Warto bliżej przyjrzeć się temu narzędziu i zrozumieć, jak działa oraz jakie korzyści może przynieść wdrożenie go do w firmie.

Przełom dla ludzkości, praw człowieka i robotów - podpisano rozporządzenie w sprawie sztucznej inteligencji

Trzeba stanowczo stwierdzić, że to przełom dla ludzkości, przełom dla praw człowieka, przełom dla pracowników i przełom dla robotów oraz automatyzacji. W dniu 13 marca 2024 r. podpisano rozporządzenie w sprawie sztucznej inteligencji, AI (Artificial Intelligence Act). To pierwszy w UE tego typu akt. Był bardzo wyczekiwany przez prawników, pracowników, wielkie koncerny, przedsiębiorców ale i po prostu obywateli. 

W tych zawodach sztuczna inteligencja nam nie zagraża

Międzynarodowy Fundusz Walutowy szacuje, że rozwój sztucznej inteligencji zmniejszy liczbę miejsc pracy nawet o 40%. W dużej części będą to pracownicy umysłowi. A jakie zawody nie są zagrożone przez sztuczną inteligencję?

Polacy wciąż boją się, ze sztuczna inteligencja zabierze im pracę

Już prawie 60 proc. Polaków obawia się wpływu sztucznej inteligencji na przyszłość swojego stanowiska pracy. To dane z raportu Polskiej Agencji Rozwoju Przedsiębiorczości (PARP) „Rynek pracy, edukacja, kompetencje – styczeń 2024”. Pracownik przyszłości powinien umieć efektywnie wykorzystać możliwości oferowane przez AI. 

REKLAMA

77% placówek medycznych doświadczyło ataków na pocztę elektroniczną. Jak chronić dane pacjentów?

Od 2022 r. podwoiły się ataki ransomware na organizacje działające w obszarze ochrony zdrowia. Tak wynika z raportu Barracuda Networks. Respondenci jednak nie czują się zagrożeni. 

Czy sztuczna inteligencja jest szkodliwa dla środowiska?

Rozwój sztucznej inteligencji nie pozostaje bez wpływu na czerpanie zasobów energii i generowanie śladu węglowego. Dlaczego? 

REKLAMA